A UTOMETERS

installation and operation manual IC7-C and IC9-C

AUTOMETERS

INST KVA

$\mathrm{kWh} / \mathrm{imp}$

The Information Centre ic ${ }^{7}-\mathrm{C}$ and $\mathrm{ic}^{9}-\mathrm{C}$

Check Contents

Package should contain:

1. Black locking bezel
2. Main meter case
3. Top terminal cover
4. Lower terminal cover

Overview

The IC7-C and IC9-C meter is 230/400 volt $50 \mathrm{~Hz}, 5 \mathrm{amp}$ current transformer operated meter designed for measuring 3 phases in a 4 wire star configured system and is capable of transmitting kWh and KVAh by means of the volt free outputs which are standard on the basic model. The model IC9-C is supplied with fully programmable RS485-Modbus communication output and is capable of transmitting all of the data the meter monitors.

Installation

Orientation

The meters are designed to be fitted into a panel, normally a switchgear cabinet. It is therefore recommended that the front of

Diagram 1. Meter Installation
the meter is positioned vertically with adequate space around and at the back for connections.

Location

The meters should be mounted in a dry dirt free environment away from all heat sources and very high electric fields. Temperatures should not exceed $70^{\circ} \mathrm{C}$ or fall below $-20^{\circ} \mathrm{C}$.

Installing the meter.

First remove the meter from the packaging and check for any damage. The meter should be in two pieces, a Front Bezel and the
back of the meter. (See diagram 1 above) The aperture required to fit the meter is $92 \mathrm{~mm} \times 92 \mathrm{~mm}$.

Holding the back of the meter in one hand and the bezel in the other hand, present to the opening. Slide the back of the meter first through the opening on the rear side of the door and then push the bezel from the front side over the protruding clear plastic and push fully home until it locks firmly. Please note it is extremely difficult to remove when fitted. Please see diagram 1.

Diagram 2. External Dimension

Phasing and polarity of the $A C$ current and voltage inputs and their relationship is critical to the correct operation of this meter.
The connection diagram shows a current transformer fitted to the Neutral.

If you do not want to monitor the neutral current it is not necessary to connect to terminals 7 and 8.
Terminal 9 is the Neutral supply
Terminals 10,11 , and 12 are the three phase line voltages (230 volt). Terminals 14,15 , and 16 are the low voltage pulse output. (volt free)

Wiring information

Power supply
The standard IC9 requires a 230 volt 50 Hz supply．This is powered from the L3 phase and Neutral internally．

Wiring

Electrical and communication connections are made directly to the back of the meter．
The main electrical connections are made to terminals 1－16 at the lower half of the meter，Communication Modbus 485 connections are made via the two sockets at the top of the meter on the side．Please see dia 2.

Programming the CT Ratio＇13＇

To programme the CT Ratio the dill switch number＂8＂on the lower dill switch block must be in the＂On＂position
See diagram 6 for position of dill switches．

Connect power to the meter．
To programme，press the function key on the front of the meter，which will then take you into the display sequences for programming the CT Ratios．
You should now see the screen below

FLEASE ENTEF
FUHETIOH NUHEEF
\＆\＆

Diagram 3：Programming Screen
（a）You will notice the cursor flashing on the first＂zero＂，by pressing the＂Energy＂key the zero will change to 1 ，if you press the＂Energy＂key again it will change to 2 and so on．
（b）If you go past your number continue going through the numbers until the number you require reappears．Stop at your correct number＇1＇．
（c）Press the＂Enter＂key and the flashing cursor will move to the right．Stop at number＇3＇．Press function．

Diagram 4 ：CT Setting Screens

RATIO
HT PRIMARY＝＊＊＊＊

（d）Repeat steps（a）to（c）to enter the correct programming details for your chosen CT ratios．
（e）When the process is complete press the＂Function＂key to take you back to the default screen．

Note：When setting CT ratios and if you have only three digits you must enter＂ 0 ＂as the first digit． e．g．100／5 would be entered as 0100／5．

When you have programmed the meter，disconnect the power to the meter and ensure dill switches are set to the＇OFF＇position．

Operating information

Power on

After you have programmed the meter and you have put power onto the meter，the first screen to appear will indicate details of the meter and your programmed parameter values．After 10 seconds will revert to normal default screen．＂b＂

a）Power On：

IT9	
3 P 46 230＇4004 50Hz	
CT Rotio	中4＊＊＊
HT Rotio	小がかれ， 5

b）Normal Default Display

IMPORT ENERGY
$\mathrm{KHH}=0 \mathrm{HODEO} .00$
$\mathrm{KVAH}=8 \mathrm{ADGOQ} . \mathrm{GQ}$
$\mathrm{KYARH}=\mathrm{GODGOQ} . \mathrm{GQ}$

Test Mode Display

At this stage it is advisable to check the connection to the meter，to do this please see page 6 function 50 ． This will enable you to see if the current transformers have been connected correctly and the three voltages are present．

Diagram 5：Connection Check Screen

COHNECTIOH			
L1	import	U1	
L2	import	U2	
L3			
import	US	OH	

The diagram above is showing that the current transformers are correct and the three phase voltages are correct．

If the current transformers are correct but the voltage on each phase is missing or below 200 volts，then the screen will look as in the diagram below：

GOHHECTIOH			
L1	import	V	DFF
L2	import．	42	DFF
LS	import．	42	DFF

Screen Definitions

Below are the available screens， which can be seen by pressing the various keys on the front of the meter．After 10 seconds the meter will revert to the＂IMPORT ENERGY＂screen．

By pressing the following keys the display will show：
a）Volts

VOLTAGE	

Press the key twice to view Page 2

FREQUEHCY
5 GI GOHz

b）Amps

AMPS	
$L 1=000 . \mathrm{B}$	
$L 2=000.0$	$T=000.0$
$L S=000.0$	$H=000.0$

c）Power Factor

FOUER	FACTOR
$L 1=0.000$	
$L Z=0.000$	$T=0.000$
$L S=0.000$	

d）Actual Demand

e）Energy

Press the key twice to view Page 2
EXFORT EHERGY
$\mathrm{KMH}=00000 \mathrm{O}$
$\mathrm{KUARH}=00000.00$

f）Harmonic

Press＇H＇key，the dislay change as below：

1．HARMONIC L1V（\％）
2．HARMONIC L2V（\％）
3．HARMONIC L2V（\％）
4．HARMONIC L1A（\％）
5．HARMONIC L2A（\％）
6．HARMONIC L3A（\％）
7．HARMONIC NA（\％）
When it enter any harmonic
display，press＇ENTER＇，it will display one kind of harmonic data．

Page 1

HARHOH	か＊＊\％
THII 0.000	$9 \mathrm{th}=0.00$
$3 \mathrm{th}=0.00$	$11 s t=0.00$
$5 \mathrm{th}=0.00$	$13 \mathrm{th}=0.00$

Page 2
HARMOHIC＊＊＊\％
7th＝0．00 15th＝0．00
17th＝0．00 25th＝0．00
19th＝0．00 27th＝0．00

Page 3

$\begin{aligned} & s t=0.00 \\ & t h=0.60 ~ \\ & 3 \end{aligned}$

Page 4

HARMOHIC＊＊＊『	
h	$43 \mathrm{th}=0.80$
$27 t h=0.80$	$45 \mathrm{th}=0.80$
$39 \mathrm{th}=0$.	$47 \mathrm{th}=0.80$

Page 5

HARMOHIC wक中 ©
$49 t h=0.00 \quad 55 t h=0.00$
$51 s t=0.00 \quad 57 t h=0.00$
$53 t h=0.00 \quad 59 t h=0.00$

Page 6

HARMOHIC＊＊＊（\％） $61 s t=0.0063 \mathrm{th}=0.60$

g）Instantaneous KW

$\begin{array}{\|l\|} \hline \text { IUST KU } \\ L 1=00.0000 \\ L 2=00.0000 \quad T=00.0000 ~ \\ L S=00.0000 \end{array}$	

h）Instantaneous KVAR

$\begin{aligned} & L 1=00,0000 \\ & L Z=60,6000 \\ & L S=00,0000 \end{aligned}$	

i）Instantaneous KVA

IHET KUA
$\angle 1=60.0000$
$L 2=00.0000 \quad T=00.0000 ~$
$L S=00.0000$

Page 2 Max Demand

viii. Press 'ENTER' Key

To see meter information continually press to scroll down pages.

Page 1

AUTOMETERS LTI ITG
seriml No: gobugol ADDRESS: 00

Page 2

METER DESCRIPTIOH
3 PHASE 4 MIRE 2501400 V 5 50 Hz

Page 3

RATI0S
UT $230.0: 230.0$
CT $5: 5$
HT $5: 5$

Page 4

FULSES DETAILS
PULSE VALUE $=1 k$ Mh
FULSE FERIOD $=100 \mathrm{~m}$

Page 5

RESET M II	FUHC-012
RATIO	FUHC-013
COHTRAST	FUHC-016
COHNEOTIOH FUHC-050	

Page 6

FULSE TEST FUHC-DEE

2) Function operating display:

Press 'FUNCT' key. Display will change to below.

FLEASE ENTER Fuhetion number
 かれ

On the screen above, you will see two asterix, one flashing. Type in the first number of the required function you wish to see by pressing the 'ENERGY' key continually until you have reached the correct number, then press 'ENTER' key. Repeat for the second asterix.
When both numbers have been entered, press the "FUNCT' key. This will take you to the desired screen.
To return to the normal screen press 'FUNCTION' key again. If you enter an incorrect number or a function which is not available on this model you will see the screen below.

FUHCTIOH SELECTED IS HOT AVAILABLE

List of function code as below:

Function Number	Option		Number
12	Demand reset		
13	Ratio	CT ratio	Primary
16	Display contrast	+ or -	Primary
50	Connection test		
60	Pulse test		

RESET MAXIMUM DEMAND
Function 12.

FRESS ENTER KEY

 TO RESET MDTo reset maximum demand enter Function 12
(page 5 function operation display)
press "enter" key.
Press "Funct" key to return to normal display.

SETTING CURRENT TRANSFORMER RATIO.

Function 13.
RATIO

> CT PRIMARY=****:5
> HT PRIMARY=****/5

To set C.T. ratio see page 3.
DISPLAY CONTRAST.
Function 16.

IISPLAY COHTRAST	
+	-

To alter the display enter function 16.
(See Page 5 function operation display)
The curser will flash on one of the two signs.
To increase contrast press "enter" key to move the curser to the flashing "+" sign,
Display will change, press the "Enter "key to step the contrast. Press "Funct" key to return to normal display.

CURRENT TRANSFORMER AND VOLTAGE CONNECTION SETTINGS
Function 50

COHHECTIOH

L1 import Y1 OFF
L2 import v2 DFF
LS import US OFF
To check connections enter function 50 .
(See Page 5 function operation display)
Press "Funct" key to see connections.
Press "Funct" key to return to normal display.

PULSE TEST

Function 60

RELAY FULSE TEST

FULSE EVERY SECOHD
FRESS ENTER TO ERIT
To test the relay output enter
function 60
(See Page 5 function operation display)
Press "enter key"
Press "Funct" key to return to
normal display.

Diagram 6.

Wiring Information
 Power Supply

The standard IC7-C and IC9-C requires a 230 volt, 50 Hz supply. This is provided from the L3 phase and Neutral internally.

Wiring

Electrical and communication connections are made to terminals 1-6 at the lower half of the meter. Communication Modbus 485 connections are made via the two sockets at the top of the meter on the side. Please see diagram 3.

Programming the Meter

To program the meter the dill switch, number " 8 " on the lower dill switch block must be in the "on" position.

Programming the Modbus Meter Register

Each meter that is connected to a Local Area Network (LAN) must have a unique modbus register so that it can be identified by the computer processor. Allocating a meter modbus register is accomplished using the upper block of dill switches. The dill switches in this block each represent a number, in geometric progression starting with dill switch number " 8 ". Thus switch number " 8 " represents register number " 1 ", switch number " 7 " represents register number "2", switch number " 6 " represents register number "4", switch number " 5 " represents register number " 8 " and so on.
To allocate a meter register number the required dill switches must be switched into the "on" (up) position.

Thus: To allocate meter register number " 1 ", only dill switch number " 8 " on the upper block of dill switches needs to be in the "on" position.
To allocate meter register number " 14 " dill switches numbers " 5 ", " 6 " and " 7 " must be in the "on" position.
To allocate meter register number " 39 " dill switches numbers " 3 ", " 6 ", " 7 " and " 8 " must be in the "on" position. Etc.

Programming the Meter Functions.

The operating functions of the meter, such as baud rate, data format etc are programmed using the lower block of dill switches, as follows:

Baud Rate

Programming the Baud rate utilises dill switches numbered " 1 " and " 2 " on the lower dill switch block, as follows:
Baud Rate Dill Switch Dill Switch 12
9600 Off Off
19200 On Off Kwh impulse with output relay: 38400 Off On switch Off

Modbus Type

Programming the modbus type utilises switch number " 4 ", as follows:
RTU: switch Off
ASCII: switch On

Parity Type

Programming the parity type utilises switch number " 5 ", as follows:
Even: switch Off
Odd: switch On

Data Format

Programming data type utilises switch number " 6 ", as follows: ASCII string: Off
Floating point: On
Floating Point Format
Programming the floating point format utilises switch number " 7 ", as follows:
High word first: switch Off
Low word first: switch On
LED Mode
Programming the LED mode and
CT ratio utilises switch number
" 8 ", as follows:
Calibration 1000 impulses per
Kwh: switch On
1200 On On

Wire Mode

Programming wire mode utilises switch number " 3 ", as follows: Two wire mode: switch Off Four wire mode: switch On

Performance and data

Overview

The IC7-C and IC9-C meters are 230/400 volt $50 \mathrm{~Hz}, 5 \mathrm{amp}$ current transformer operated meter designed for measuring 3 phases in a 4 wire star configured system and is capable of transmitting kWh and kVAH by means of the volt free outputs which are standard on the basic model. The model IC9-C is supplied with a fully programmable RS485-communication output and is capable of transmitting all of the data the meter monitors.

Technical Parameters

Meter Standard	BS EN 61036
Accuracy	Active 1.0, Reactive 2.0
Reference Voltage	$3 \times 230 / 400 \mathrm{v}$
Basic Current	5 Amp
Maximum Current	6 Amp
Frequency	50/60 Hz
Pulse Constant (LED strobe)	$1000 \mathrm{imp} / \mathrm{kWh}$, $1000 \mathrm{imp} / \mathrm{kVAH}$
Range of Voltage	200-250 volt
Operating Temperature	$-30^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
Storage Temperature	$-30^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$
Power Consumption	$\begin{aligned} & \text { 0.01VA @5A; 0.8W, } \\ & \text { 8VA @230V } \end{aligned}$
Pulse Output	IEC 62053-31
Red L.E.D.	Pulse Indication.
Display	20×4 character LCM with background light.
Output Details	2 - Opto isolated Mosfet devices: 400 ACV, 100ma KWh, KVAH
Pulse Duration	80-100 ms closure
Pulse Value	C.T. Value less than 1000/5A $=1 \mathrm{kWh} / \mathrm{imp}$ C.T. Value 1000/5A or more than $=10 \mathrm{kWh} / \mathrm{imp}$

Current transformer selection

For accurate monitoring, correct selection of the current transformers is critical.
Always select the current transformers suitable for the load you are actually monitoring.
DO NOT automatically select current transformers to the breaker size in case the load is significantly lower.

Main Function

Measurement and Information available from Keypad.

1. Active, Reactive, Apparent import energy
2. Active, Reactive export energy

Real Variables

1. Voltage: 3 phase voltages, 3 line voltages
2. Current: 3 phase current and neutral current
3. Active instant (kW): 3 phase and total power
4. Reactive instant (KVAR): 3 phase and total power
5. Apparent (KVA): 3 phase and total power
6. Power factor: 3 phase and total power factor
7. Frequency

Demand (Demand period 30 minutes)

1. Current Demand: Active, Reactive, Apparent demand
2. Maximum demand: Active, Reactive, Apparent Maximum demand

Performance characteristics

Diagram 9: Typical load curve with balanced load at 50 Hz .

$\begin{array}{\|l\|} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \end{array}$	IC ${ }^{9}$ Load Curve											
	--.. Lead											
-0.1												
0.1	1.0	2.0	3.0	4.0	5.0	6.0						

Important

The meter must be fitted by a competent person and must be fitted in accordance to the latest edition of electrical regulations concerning electricity meters.

The attention of the specifier, purchaser, installer and user is drawn to the special measures and limitations to use, which must be observed when this product is taken into service to maintain compliance with the CE directives currently in force. Details of these special measures and limitation to use are available from HMSO.

Ref: IEC 1000-5-1 (BS195/210788DC), IEC 1000-5-2 (BS195/214642DC), IEC 1000-5-6 (BS195/ 210789DC).

Dedicated customer service

Customer service is the cornerstone of the company's success. A positive service policy is observed throughout every specialist area of operation.

The personal involvement of the directors at every level, a highly trained and motivated staff, fully computerised systems and in depth stock holding, combine to provide a level of service which has earned the appreciation of customers across the spectrum of the UK and export markets.

Computerised distribution systems are geared to consistent 24-hour despatch of products, with 20minute despatch being possible in respect to urgent demand for small orders.

Product range

Metering and monitoring equipment ranges from single and three phase kWh meters to a sophisticated range of fully programmable information centres. Also available are Electronic meters capable of monitoring over 400 individual parameters with full memory backup for in depth graphical analysis of power usage, together with a range of devices which enables data to be transferred utilising leading-edge telephone technology, thus enabling the information to be sent directly to the web and viewed via a PC, a laptop computer or even a mobile 'phone. The information can also be sent to a dedicated internal server if preferred.

Product development is continuous and Autometers Systems Ltd reserves the right to make alterations in specifications and manufacture without notice. Products as delivered may therefore differ slightly from the description and illustrations contained in this publication.

Autometers Systems Limited 4b Albany Road, Chorlton-cum-Hardy, Manchester M21 0AW

